

AUGUST/SEPTEMBER 2022

RAVENSBURG-BAVENDORF

Bereits seit Jahren erstellt das Kompetenzzentrum Obstbau Bodensee (KOB) in Ravensburg, Einschätzungen und Empfehlungen zur bevorstehenden Erntesaison und der möglichen Lagerfähigkeit der heimischen Apfel- und Birnensorten. Für ein verlässliches und umfassendes Bild der diesjährigen Saison werden die Witterungsbedingungen, das Triebwachstum und der Fruchtbehang sowie Analysen der Fruchtentwicklung und Nährstoffversorgung berücksichtigt.

Ziel ist es, anhand dieser Untersuchungen und den langjährigen Erfahrungen, den Obstproduzenten in der Bodenseeregion ein besseres Bild über die bevorstehende Ernte und Fruchtqualität vermitteln zu können.

Das Kompetenzzentrum wünscht eine erfolgreiche Ernte- und Lagersaison 2022.

Dr. Daniel Neuwald

Leiter Fachbereich Ernte, Lagerung und Fruchtqualität

Ein Blick auf Europa

Die Vorhersagen der Prognosfruit 2022 für die Apfelernte in diesem Jahr stimmen zunächst optimistisch: Laut ersten Prognosen sind EU-weit mit hohen Apfelerträgen und einer Steigerung der Produktionsmenge im Vergleich Durschnitt der Vorjahre zu rechnen. In Deutschland wird die Erntemenge voraussichtlich auf einem durchschnittlich hohen Niveau liegen. der Bodenseeregion sind zwar bei Sorten wie Golden Delicious oder Braeburn ein

Geschä	tzte /	Apfel	erträ	ge (1	000	t) in	der E	U 27	und	UK i	n 20	22
Land	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	zu 21	zu 16-21 o. 17
Polen	3.170	3.750	3.979	4.035	2.870	4.810	2.910	3.410	4.300	4.495	5%	15%
Italien	2.122	2.456	2.280	2.272	1.704	2.264	2.096	2.124	2.053	2.150	5%	-1%
Frankreich	1.576	1.444	1.674	1.515	1.424	1.477	1.651	1.337	1.383	1.468	6%	0%
Deutschland	804	1.116	973	1.033	597	1.093	991	1.023	1.005	1.067	6%	4%
Spanien	464	446	482	495	480	476	555	425	563	431	-23%	-14%
United Kingdom	204	175	183	183	206	219	205	196	186	245	32%	24%
Niederlande	314	353	336	317	228	267	272	220	243	245	1%	-7%
Belgien	220	326	285	234	88	231	242	168	250	219	-12%	-3%
Griechenland	236	245	242	259	231	301	276	280	246	294	20%	8%
Portugal	284	272	329	263	314	267	354	278	368	294	-20%	-4%
Österreich	155	188	177	40	67	184	146	126	120	148	23%	20%
Ungarn	585	920	522	498	530	782	452	350	520	350	-33%	-33%
Rumänien	367	382	336	327	230	425	327	384	444	410	-8%	7%
Tschechien	121	131	156	139	102	145	103	118	110	128	16%	4%
Kroatien	96	62	101	35	66	86	60	55	65	57	-12%	-5%
Slowenien	56	68	71	12	6	72	36	46	44	47	7%	12%
Sonst.	137	125	139	121	108	176	106	160	116	121	4%	-11%
EU insg.	10.929	12.541	12.326	11.833	9.251	13.275	10.783	10.700	12.016	12.168	1%	4%

EU 27 plus UK ohne Bulgarien, Zypern, Estland, Finnland, Irland, Luxemburg

Quelle: Prognosfruit 2022

Abbildung 1 Marktsituation EU – Geschätzte Apfelerträge

deutlicher Rückgang zu erwarten, hingegen etablieren

sich Clubsorten zunehmen im Markt. Weiterhin stärkste Kraft im Apfelanbau der Bodenseeregion bleiben altbekannte Sorten wie Jonagold, Elstar, Braeburn und Gala.

Insbesondere Ländern wie Polen und Türkei setzen sich mit steigenden Produktionsmengen weiter als aufsteigende Akteure im Apfelmarkt durch. Auch in produktionsstarken Ländern wie Italien und Frankreich werden starke Ernten erwartet. Wie sich dies schlussendlich auf die Marktsituation und Preise auswirken wird, muss sich jedoch noch zeigen. In der Schweiz hingegen sieht die Situation anders aus: Hier muss mit einem deutlichen Rückgang der Erntemengen verglichen zum Durchschnitt der Vorjahre gerechnet werden. Besonders in den marktrelevanten Sorten Gala oder Golden Delicious sind niedrigere Erträge zu erwarten.

										Vergleiche			
Sorte	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022e	zu 2021	zu 16-21 o. 2017	Anteil
Jonagold/-gored	56.900	65.000	43.100	48.600	13.900	61.500	55.200	40.700	52.200	55.400	6%	7%	21%
Elstar	45.000	54.700	37.000	45.000	18.000	47.900	41.300	40.000	35.600	40.900	15%	-3%	16%
Golden Del	10.900	9.500	8.600	8.300	3.000	6.100	3.500	3.400	2.700	2.800	4%	-42%	1%
Braeburn	27.000	30.000	27.800	24.500	8.900	29.400	26.700	32.000	22.800	23.900	5%	-12%	9%
Gala	23.000	26.400	26.700	27.200	12.300	33.000	30.500	39.800	28.500	32.800	15%	3%	13%
ldared	11.600	10.000	10.800	5.000	2.100	6.700	4.200	4.800	4.000	4.600	15%	-7%	2%
Boskoop	6.600	5.000	2.500	2.900	1.200	5.800	4.800	4.800	3.800	4.600	21%	4%	2%
Pinova	6.800	7.400	7.300	6.500	3.400	8.000	5.600	6.500	6.500	6.800	5%	3%	3%
Topaz	5.900	5.500	4.600	3.500	1.600	6.400	5.600	5.500	3.800	4.800	26%	-3%	2%
Fuji	8.300	13.000	12.800	14.100	3.900	15.800	15.300	14.800	11.200	13.400	20%	-6%	5%
Red Jonaprince	9.100	13.800	11.600	16.300	5.400	24.100	23.300	15.300	23.000	25.800	12%	26%	10%
Clubsorten	11.100	18.000	17.200	17.000	5.000	28.000	24.600	30.200	23.300	31.300	34%	27%	12%
Sonstige	17.800	19.000	11.000	11.100	12.400	16.000	11.100	12.200	10.200	11.500	13%	-5%	4%
Äpfel ges.	240.000	277.300	221.000	230.000	91.100	288.700	251.700	250.000	227.600	258.600	14%	4%	100%

Abbildung 2 Marktsituation Bodensee – Aufteilung in individuelle Apfelsorten

Fruchtqualitäten in der Saison 2022

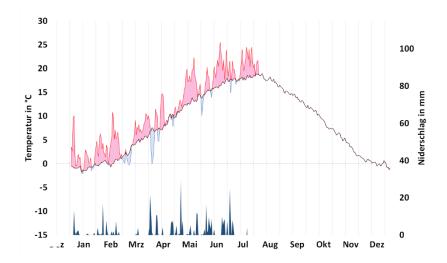


Abbildung 3 Temperatur und Niederschlagsverlauf der Saison 2022 bis August

Zunächst sahen die Witterungsbedingungen in dieser Saison ideal für eine gute Fruchtentwicklung aus. Der Trend von wärmeren Temperaturen im Winter und Frühjahr setzte sich auch in diesem Jahr fort. Dies hat eine stetig frühere Blütenbildung der heimischen Obstarten zur Folge. Eine Entwicklung, die am Standort Ravensburg-Bavendorf für die Sorte "Golden Delicious" über einem Zeitraum von bereits 60 Jahren verfolgt werden kann.

Erzeuger konfrontiert das jedoch mit besonderen Herausforderungen: Die Blüten sind deutlich früher in einem temperaturempfindlichen Entwicklungsstadium, in einem Zeitraum in dem späte Fröste durchaus üblich sind. Temperaturbereiche bis -4 °C sind in März oder April keine Seltenheit, können aber bereits schwerwiegende Beeinträchtigungen der späteren Fruchtentwicklung bis sogar den Totalausfall der Ernte bedeuten. In diesem Jahr wurde die Bodenseeregion größtenteils verschont, ein katastrophales Frostereignis wie einst im Jahr 2017 ist glücklicherweise nicht eingetreten. In ungünstigen Lagen können jedoch durchaus frostbedingte optische Makel oder unterentwickelte Früchte vorzufinden sein.

Vollblüte beim "Golden Delicious" von 1963 bis 2022 am Standort Bavendorf

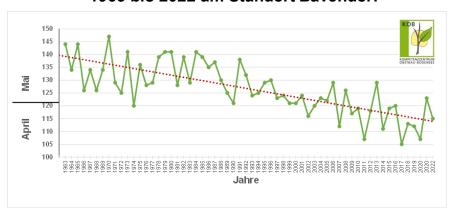


Abbildung 4 Zeitpunkt der Vollblüte bei Golden Delicious über die vergangenen 60 Jahre - Standort Ravensburg

Auch wenn in der Bodenseeregion zunächst größere Fruchtkaliber verglichen zum langjährigen Mittel festgestellt wurden, ist dies vermutlich bei den meisten Sorten auf die verfrühte Fruchtentwicklung zurückzuführen. Da der Fruchtbehang sowie das Triebwachstum bei den meisten relevanten Apfelsorten im optimalen Bereich liegen, waren Stand Anfang August keine übergroßen Fruchtkaliber zur Ernte in der Bodenseeregion zu erwarten. Dies kann Erzeuger und Vermarkter zunächst optimistisch stimmen, da zu große Früchte bekanntlich besonders in der Lagerung problematisch werden können. Unter anderem ist dies auf eine häufig ungenügenden Mineralstoffversorgung zurückzuführen.

Denn speziell das Kalium/Calcium Verhältnis besitzt maßgeblichen Einfluss auf die Lagerfähigkeit von Früchten. Calcium spielt eine wichtige Rolle in der Erhaltung von Zellstrukturen. Ein ungünstiges Verhältnis bzw. Calcium Mangel kann somit den Verlust an Festigkeit oder die Bildung verschiedener Lagerkrankheiten wie Stippigkeit fördern. Erste Prognosen Anfang August zeigten, dass mit Ausnahme von Elstar die Mineralstoffversorgung der Apfelsorten in dieser Saison in einem guten Bereich liegt. Allerdings hängt wie bereits angesprochen viel von der schlussendlichen Fruchtgröße ab. Calcium wird im Wesentlichen in den frühen Phasen der Fruchtentwicklung eingelagert, später erfolgt der Transport primär aufgrund größerer Konkurrenzkraft in andere Pflanzenorgane. Das heißt: Werden die Früchte zur Ernte zu groß, reicht oftmals die früh eingelagerte Calcium Menge nicht aus um eine ausreichende Versorgung sicherzustellen und die Haltbarkeit ist gefährdet. Für eine geplante Langzeitlagerung sind demnach bei Elstar zusätzliche Calcium Behandlungen zu empfehlen.

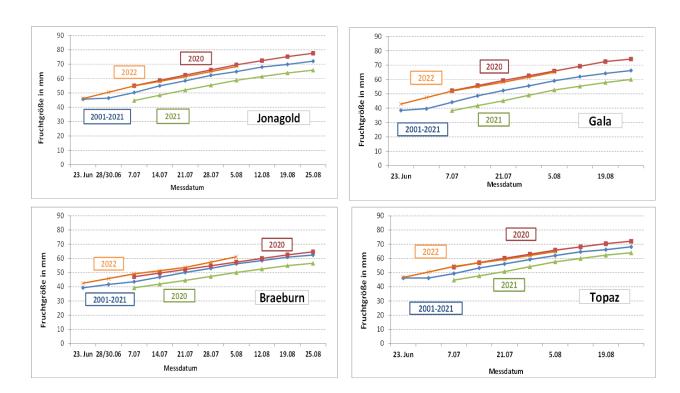
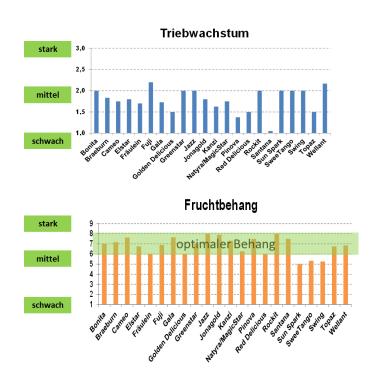



Abbildung 5 Fruchtgrößenentwicklung relevanter Apfelsorten im Vergleich zu den Vorjahren

Abbildung 6 Bonitur Triebwachstum und Fruchtbehang relevanter Sorten



Abbildung 7 Mineralstoffversorgung dargestellt als Kalium:Calcium Verhältnis – Apfelsorten der Bodenseeregion

Hinsichtlich der Fruchtqualität fielen die ersten Prognosen Anfang August zunächst positiv aus. Die Fruchtfleischfestigkeit lag bei den meisten Sorten noch auf einem guten Niveau. Schätzungen für Zuckerkonzentrationen zeigten, dass Gala und Jonagold im langjährigen Mittel liegen; Elstar und Golden Delicious hingegen etwas zu niedrig. Der Säuregehalt hingegen war bei der ohnehin eher sauren Sorte Elstar in dieser Saison stärker ausgeprägt, Gala und Jonagold waren im Mittel. Somit standen nicht mal ein Monat vor Erntebeginn die Vorzeichen gut.

Extremjahr 2022?

Mit naherückender Ernte weckte die Saison jedoch schlechte Erinnerung an das Extrem Jahr 2018, in dem die Region bereits aufgrund des stark ausgeprägten Sommers, mit einer sehr frühen Reife, einem sehr begrenzten Erntefenster und schlussendlich Problemen in der Fruchtqualität zu kämpfen hatte. Auch in diesem Jahr war der August geprägt von konstant hohen Temperaturen und anhaltender Trockenheit, und beeinträchtigte die Fruchtqualität kurz vor der einsetzenden Erntesaison nachhaltig.

Um das Erntefenster der etablierten Sorten besser einschätzen zu können, wird in der Bodenseeregion für Kernobst der Reife-Index nach Streif herangezogen, der die Faktoren Festigkeit, Zuckergehalt sowie den Stärkeabbau berücksichtigt. Für die meisten Sorten lag der Reife-Index in etwa im langjährigen Mittel. Einzelne Sorten hatten Anfang August bereits mit dem Stärkeabbau begonnen. In diesem Jahr zeigte sich erneut, dass sich Erzeuger nicht allein auf den Stärkeabbau als Indikator für den Reifegrad ihrer Früchte verlassen sollten. Aufgrund der warmen Witterung beziehungsweise insbesondere der viele Sonnenscheinstunden während der Saison, wurden in den Früchten viel Stärke eingelagert. Somit verzögerte sich auch der Abbau und täuschte eine Unreife vor. Zusätzlich verzögerte sich mit den heißen Nächten auch die Rotfärbung in vielen Apfelsorten. Somit besteht ein hohes Risiko das Erntefenster falsch einzuschätzen: Während man auf eine schöne Ausfärbung der Äpfel wartet und den Stärkeabbau im Blick behält, sind die Früchte tatsächlich bereits viel weiter in ihrer Reife fortgeschritten. Nach ersten Prognosen Anfang August, war mit einer Fruchtreife und Erntetermin bei den meisten Apfelsorten in etwa eine Woche früher als im Schnitt der letzten 15 Jahre zu rechnen.

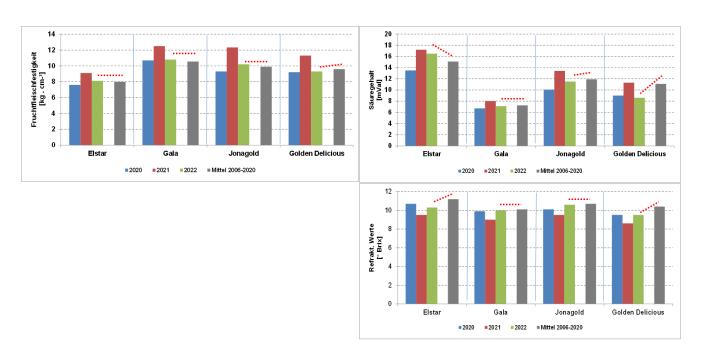


Abbildung 8 Zu erwartende Fruchtqualität im Jahresvergleich

Dies sollte sich schlussendlich für die Sorten Elstar und Gala auch bestätigen. Nicht nur waren die Elstar Äpfel teils mehr als 10 Tage früher reif, das Erntefenster fiel auch besonders kurz aus in diesem Jahr. Überschneidende Erntefenster verschiedener Sorten werden hier Betriebe an ihre Grenzen bringen. Hier zahlte es sich aus, frühzeitig eine pflückstarke Mannschaft bereit stehen zu haben und die Abläufe der Ernte im Detail durchzuplanen.

Bereits die ersten gepflückten Elstar Äpfeln oder Conference Birnen ließen erkennen, dass niedrigen Festigkeiten in dieser Saison ein Problem darstellen können. Vermutlich bedingt durch die hohen Temperaturen im August kann von einem "Verkochen" der Äpfel gesprochen werden, als Folge war der Festigkeitsverlust deutlich beschleunigt. Umso wichtiger die Früchte möglichst schnell vom Baum zu holen. Bei betroffenen Sorten wie Elstar ist bei einer vorgesehenen Langzeitlagerung auch der Einsatz von 1-MCP <u>und/oder DCA</u> zu empfehlen, da der Festigkeitsabbau voraussichtlich auch im Lager beschleunigt sein wird.

Verschiedene Betriebe in der Bodenseeregion berichteten zudem, dass aufgrund der extremen Bedingungen, bei einigen Sorten die Zuckereinlagerung gestört sein kann: Schon bei nur leicht anfälligen Sorten wie Gala oder Pinova können somit Fälle von Glasigkeit auftreten. Dies muss unbedingt vor einer weiteren Vermarktung oder Lagerung im Blick behalten werden. Mitunter hilft es betroffene Früchte zunächst für wenige Wochen bei 3-4 °C im Kühllager zu halten und die CA-Bedingungen zu verzögern; häufig können so die Symptome wieder abgebaut werden. Ist dies nicht der Fall muss von einer Langzeitlagerung abgeraten werden, da von Glasigkeit betroffene Früchte dazu neigen im Lager Fleischbräune zu bilden.

Generell sollte bei einer Ernte zu sehr hohen Temperaturen die Einlagerungsstrategie angepasst werden, denn eine zu schnelle Abkühlung warmer Äpfel kann das Auftreten von weicher Schalenbräune begünstigen. Durch eine Stufenabkühlung auf zunächst $4-5\,^{\circ}$ C wird den Früchten Zeit gegeben, sich an die neuen Bedingungen zu akklimatisieren. Dies reduziert den Stress für die Frucht und somit physiologische Lagerkrankheiten. Folgend kann jede Woche die Lagertemperatur um $0.5-1.0\,^{\circ}$ C verringert werden bis zum Erreichen der sortenindividuellen Temperatur.

Zusammenfassung

Nach einem zunächst guten Start in die Saison, stellen die extremen Witterungsbedingungen im August Produzenten in der Bodenseeregion vor Probleme. Erste Erfahrungen die mit frühen Sorten gemacht wurden, zeigen eine besondere Herausforderung in der Ernteorganisation in diesem Jahr. Der verzögerter Stärkeabbau und eine schwache Ausfärbung erhöhen das Risiko das Erntefenster zu verpassen, welches ohnehin in diesem Jahr für viele Sorten sehr kurz ausfallen kann. Trotz alledem, geben die ersten Prognosen weiterhin ein positives Bild ab. Für viele Sorten sind in der Region in diesem Jahr mit hohen Erträgen zu rechnen und dank einer guten Mineralstoffversorgung und einer ausreichenden Fruchtqualität zur Ernte, werden sich sowohl Produzenten als auch Konsumenten über eine gute Erntesaison und Haltbarkeit der Früchte freuen können.

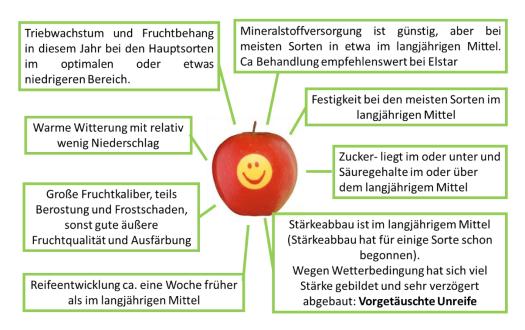


Abbildung 9 Zusammenfassung

Ernteempfehlungen

Die Wahl des Erntetermins stellt in der Produktion der heimischen Apfel- und Birnensorten der finale aber in vielerlei Hinsicht bedeutende Schritt dar. Hier wird nicht nur über die schlussendliche Fruchtqualität, sondern auch über die mögliche Haltbarkeit entschieden. Um Produzenten in der Strukturierung ihrer Ernte zu unterstützen, wurden am Kompetenzzentrum Empfehlungen für die relevanten Sorten ausgearbeitet. Diese wurden für die herrschenden Bedingungen in der Bodenseeregion erstellt.

Apfelsorten	Festigkeit	RefraktWert	Stärke-Abbau	<u>Streif-index</u> Ernte-Fenster		Glasigkeit*	Ernte **
	(kg · cm⁻²)	(° Brix)	1 bis 10	Erntebeginn	Ernteschluss		Bodensee
Arlet	7 - 9	11,5 - 12,5	4 - 6	0,15	0,08		E Sep.
Boskoop	7 - 8	11,5 - 12,5	4 - 6	0,15	0,08	empfindlich	M - E Sep.
Braeburn	8 - 9	11,5 - 12,5	4 - 5	0,20	0,14		M Okt.
Cameo	8 - 9	11,5 - 12,5	4 - 6	0,20	0,08		A Okt.
Cox Orange	7 - 8	11,0 - 12,0	4 - 6	0,20	0,08	sehr empfindlich	A - M Sep
Delbar Estivale	5 - 7	11,0 - 12,0	4 - 7	0,18	0,05		M-E Aug.
Elstar	6,5 - 7,5	11,5 - 12,5	2 - 3	0,30	0,15		A Sep.
Fiesta	7,5 - 8,5	11,0 - 12,0	4 - 6	0,3	0,15		M Sep
Fuji	8 - 9	12,5 - 13,5	7 - 9	0,08	0,04	sehr empfindlich	M - E Okt.
Gala	8 - 9	11,5 - 12,5	4 - 6	0,16	0,08		A Sep.

Apfelsorten	Festigkeit	RefraktWert	Stärke-Abbau	<u>Streif-index</u> Ernte-Fenster		Glasigkeit*	Ernte **
	(kg · cm⁻²)	(° Brix)	(1 bis 10)	Erntebeginn	Ernteschluss		Bodensee
Golden Delicious	7 - 8	11,5 - 12,5	6 - 8	0,10	0,05		E Sep
Idared	7 - 8	10,5 - 11,5	4 - 6	0,15	0,08		A Okt.
Jonagold	7 - 8	11,5 - 13,0	7 - 9	0,07	0,05	empfindlich	E Sep.
Kanzi	8 - 9	12,0 - 14,0	4 - 5	0,15	0,12		A Okt.
Mairac	7 - 9	12,0 - 13,0	3 - 6	0,25	0,10	sehr empfindlich	E Sep.
Natyra	7 - 9	12,0 - 13,0	4 - 5	0,17	0,12		A./M. Okt.
Pinova	8 - 9	11,5 - 12,5	4 - 6	0,16	0,08		E Sep.
Rubinette	7 - 8	12,5 - 13,5	4 - 5	0,15	0,12		M Sep.
Santana	6 - 7	10,5 - 11,0	1 - 4	0,40	0,15		E Aug.
Topaz	7 - 8	11,5-12,5	4 - 6	0,15	0,10		M - E Sep.

Birnensorten	Festigkeit	Refrakt Wert	Stärke- Abbau	<u>Streif-</u> Ernte-F	Ernte **	
	(kg · 0,5cm ⁻²)	(° Brix)	(1-10)	Erntebeginn	Ernteschluss	Bodensee
Alexander Lucas	6 - 7	10,0 - 12,0	4 - 6	0,18	0,08	A - M Sep
Concorde	6 - 7	12,0 - 13,5	4 - 6	0,15	0,07	A - M Sep
Conference	6 - 7	11,5 - 13,0	4 - 6	0,15	0,08	A Sep
Gellerts	5 - 6	11,0 - 13,0	5 - 6	0,11	0,06	M - E Sep
Vereinsdechant	5 - 6	12,0 - 13,5	7 - 8	0,07	0,05	E Sep
Williams	7 - 8	10,0 - 12,0	4 - 6	0,20	0,10	M - E Aug
Xenia	6 - 7	12,0 - 13,0	6 - 7	0,10	0,06	M - E Sep

Lagerempfehlungen

Apfel- und Birnensorten können sich teilweise stark in ihrer Lagerfähigkeit unterscheiden. Zudem zeigen die Sorten individuelle Empfindlichkeiten hinsichtlich der eingestellten Lagerbedingungen. Für einen optimalen Erhalt der Fruchtqualität, ohne die Bildung von Krankheiten zu fördern, müssen diese sortentypische Verhalten in der Lagersteuerung berücksichtigt werden. Basierend auf langjährigen Versuchsreihen wurden am Kompetenzzentrum Empfehlungen für die Lagerung der heimischen Sorten ausgearbeitet.

Sorte	Lager-	Erntetermin	Lager-	Lag	gerbedingun	gen	KOB-Bavendorf 2022
	art	A = Anfang M = Mitte E = Ende	dauer	Tempe- ratur °C	Sauer- stoff % O ₂	Kohlen- dioxid % CO ₂	Bemerkungen
Boskoop	Kühl	M./E.Sept	E. Jan	3-4	-	-	CO ₂ -empfindlich,
	CA		E. Mär	3-4	1,5-2,0	<1,5	Stippe, Schalen-, Fleisch-, Kernhausbräune
Braeburn	Kühl	M.Okt.	E. Jan	1	-	-	sehr CO ₂ -empfindlich, Stippe, Fleischbräune
	CA		E. Mai	1-2	1,0-1,5	<1,2	für CA früher ernten, CA 3 Wochen verzögern
Cameo	Kühl	A.Okt	E. Dez	1	- 1	-	Unterentwickelte Schattenfrüchte zuerst 2 Monate
	CA		E. Jul	1-2	1,0-1,5	2,0-3,0	<1,5% CO ₂ oder mit verzögertem CA lagern
Cox Orange	Kühl	A./M.Sept.	E. Dez	3-4	-	-	CO ₂ -empfindlich,
	CA		E. Mär	3-4	1,2-1,5	<1,5	Stippe, Schalen-, Fleisch-, Kernhausbräune
Elstar	Kühl	A. Sept.	E. Dez	1	-	-	schneller Festigkeitsverlust, innere Fleisch-
	CA		E. Apr	1-2	1,0-1,5	<2,5	verbräunung, bei Gefährdung CA verzögern u. CO ₂ < 2%
Fuji	Kühl	M/E.Okt	E. Jan	1	-	-	Glasigkeit, dadurch Gefahr von Fleischbräune; bei Gefährdung
	CA		M. Jun	1-2	1,0-2,0	<1,5	zuerst 6 Woche Kühllager bei 3 bis 4°C, dann CA bei 1 bis 2°C
Gala	Kühl	A./M.Sept.	A. Jan	1	-	-	bei zu langer Lagerung Geschmacksverlust
	CA		E. Mai	1-2	1,0-1,5	2,0-3,0	durch Säureabbau
Golden Delicious	Kühl	E.Sep.	E. Dez	1	-	-	Bei nicht optimalen Bedingungen: Altersschalenbräune
	CA		E. Jul	1-2	1,0-1,5	2,0-3,0	Unterentwickelte Schattenfrüchte CO ₂ empfindlich (siehe Cameo)
Idared	Kühl	A.Okt.	E. Mär	2	-	-	etwas kälte- und CO ₂ -empfindlich
	CA		A. Jul	2-3	1,0-1,5	2,0.	
Jonagold	Kühl	E.Sept	E. Jan	1	-	-	Stippe; Bei nicht optimalen Bedingungen:
	CA		E. Jul	1-2	1,0-1,5	2,0-3,0	fettige Schale, rascher Festigkeitsverlust, Altersschalenbräune
Kanzi	Kühl	A.Okt	E. Feb	3			nicht zu spät ernten
	CA		E. Mai	3,5	1,0-1,5	<1,5	kälte- und CO ₂ -empfindlich
Natyra	Kühl	A./M. Okt	E. Jan	1-2			bei Bio-Ware wird eine niedrige Temperatur empfohlen,
D'	CA	F 0 .		1-3	1,0-1,5	2,0-3,0	um Fäulnisbefall zu reduzieren
Pinova	Kühl	E.Sept	M. Jan	1	4045	-	anfällig für Lagerfäulen (3°C vermeiden, vermehrter Gloeosporiumbefall als bei 1°C)
Rubinette	CA Kühl	M./E. Sep	A. Jun E. Dez	1-2 1	1,0-1,5	2,0-3,0	bei reiferen Partien Gefahr von weicher Schalenbräune (Stufenkühlung)
Rubinette	CA	w./⊏. Sep	A. Mär	1-2	- 1,2-1.5	- <1,5	bei zu später Ernte schneller Festigkeitsverlust und Fleischverbräunungen
Santana	Kühl	E. Aug	A. Mar A. Dez	2	1,2-1.0	<1,5	bei später Ernte, stark CO ₂ empfindlich, Festigkeitverlust und
Santana	CA	L. Aug	A. Feb	2-3	1.2-1.5	<1,0	Fleischverbräunungen, keine CA-Verzögerung (negative Wirkung)!
Topaz	Kühl	M./E.Sept	M. Feb	1	1,2-1.5	<1,0 -	Bei zu später Ernte schnell weich und fettig, anfällig gegenüber Lagerfäulen
торах	CA	w./⊑.oept	M. Jun	1-2	- 1,0-1,5	2,0-3,0	Unterentwickelte Schalenfrüchte besitzen typischerweise eine hohe Empfindlichkeit im
	CA		IVI. JUIT	1-2	1,0-1,3	2,0-3,0	Lager Schalennekrose (CO2 Verätzung) zu entwickeln. Aktuell laufen daher Versuche um
							Lagerempfehlungen für unterentwickelte Früchte zu entwickeln, um einen optimalen Erhalt de
							Fruchtqualität bei guter Fruchtqesundheit zu ermöglichen

O-mt-		E			·	OB-Bavendorf 2022
Sorte	Lager- art	Erntetermin A = Anfang M = Mitte	Lager- dauer	Temperatur	agerbedingunge Sauerstoff	n Kohlendioxid
		E = Ende		°C	% O ₂	% CO ₂
Alexander Lucas	Kühl	A./M.Sept	E. Mär	-1 bis 0	-	-
Comice	Kühl	M./ESep.	E. Jan	-1 bis 0	-	-
	CA		E. Mai	-1 bis 0	2,0 - 3,0	3
Concorde	Kühl	M. Sep.	E. Jan	-1 bis 0	-	-
	CA		E. Mai	-1 bis 0	2,0 - 3,0	<1,2
Conference	Kühl	A.Sep.	E. Jan	-1 bis 0	-	-
	CA		E. Mai	-1 bis 0	2,0 - 3,0	<1,2
Packhams	Kühl	M.Sep.	E. Jan	-1 bis 0	-	-
	CA		E. Mai	-1 bis 0	2,0 - 3,0	3
Xenia	Kühl	M./E. Sep.	E. März	-1 bis 0	-	-
	CA		E. Jun	-1 bis 0	2,0 - 3,0	<1,2
Williams	Kühl	M./E. Aug.	E. Nov	-1 bis 0	-	•

Zum Abschluss möchten wir drei Kollegen und Freunden gedenken, die uns leider in diesem Jahr verlassen haben. Unsere Arbeitsgruppe möchte unseren Dank für die vielen Jahre der erfolgreichen und vor allem freundschaftlichen Zusammenarbeit aussprechen.

Gemeinsam mit Herrn Dr. Streif vom Kompetenzzentrum, leistete Herr Dr. Höhn einen wesentlichen Beitrag das bereits seit 20 Jahren stattfindende Lagerseminar Streif aufzubauen und zu etablieren. Kurz vor dem Ruhestand konnte sich Dr. Höhn gemeinsam mit Dr. Streif noch für ihre harte Arbeit belohnen und die "International Conference on ripening regulation and postharvest fruit" in Weingarten zu veranstalten. Auch dank Ernst Höhn, können wir auf eine langjährige Zusammenarbeit und Freundschaft zwischen dem KOB und Agroscope zurückblicken, die heute mit den Nachfolgern Dr. Bühlmann und Dr. Neuwald fortgeführt wird.

Mit seiner freundlichen und zugänglichen Art und seiner großen Hilfsbereitschaft war Hr. Jens Terschanski ein gern gesehener Gast und Freund unserer Lagergruppe. Bei jeder kommenden Untersuchung zur Lagerung von Bio-Obst werden wir uns an ihn mit Freude erinnern.

Auch mit Prof. Dr. Hribar können wir auf eine langjährige Zusammenarbeit mit unserer Arbeitsgruppe zurückblicken, die noch unter der Leitung von Dr. Streif ihren Anfang fand. Prof. Hribar war stets ein gern gesehener Gast beim Lagerseminar in Ravensburg-Bavendorf, und scheute sich nicht vor einer längeren Anreise. Wir durften ihn jedoch auch als sehr zuvorkommenden und herzlichen Gastgeber kennenlernen. Prof. Hribar hatte stets ein offenes Ohr und war immer erfreut über Zusammenarbeiten

Wir behalten die von uns gegangen in Erinnerung.